# Implicit energy update FargoCPT code (old): $\alpha = 1 + 2 H \frac{\sigma_R}{c} 4 (\frac{m_\mu (\gamma - 1)}{R \Sigma})^4 e^3$ $\frac{\partial e}{\partial t} = \frac{-p\nabla u + Q^+ - Q^-}{\alpha}$ ## What is $\alpha$ ### Equation to solve: $\frac{\partial (e + E_{rad})}{\partial t} = -p\nabla u + Q^+ - Q^- - \nabla F$ $\frac{\partial e}{\partial t} = - p \nabla u + Q^+$ $\frac{\partial E_{rad}}{\partial t} = - Q^- - \nabla F$ $E_{rad} = 2 H \frac{\sigma_R}{c} T^4$ $T = \frac{m_\mu(\gamma - 1)}{R\Sigma} e$ $E_{rad} = 2 H \frac{\sigma_R}{c} (\frac{m_\mu (\gamma - 1)}{R \Sigma})^4 e^4$ $\frac{\partial E_{rad}}{\partial t} = 2 H \frac{\sigma_R}{c} 4 (\frac{m_\mu (\gamma - 1)}{R \Sigma})^4 e^3 \frac{\partial e}{\partial t}$ $\frac{\partial (e + E_{rad})}{\partial t} = -p\nabla u + Q^+ - Q^- - \nabla F$ $\frac{\partial e}{\partial t} + 2 H \frac{\sigma_R}{c} 4 (\frac{m_\mu (\gamma - 1)}{R \Sigma})^4 e^3 \frac{\partial e}{\partial t}= -p\nabla u + Q^+ - Q^- - \nabla F$ $\frac{\partial e}{\partial t}(1 + 2 H \frac{\sigma_R}{c} 4 (\frac{m_\mu (\gamma - 1)}{R \Sigma})^4 e^3)= -p\nabla u + Q^+ - Q^- - \nabla F$ $\alpha = 1 + 2 H \frac{\sigma_R}{c} 4 (\frac{m_\mu (\gamma - 1)}{R \Sigma})^4 e^3$ $\frac{\partial e}{\partial t} = \frac{-p\nabla u + Q^+ - Q^- - \nabla F} {\alpha}$ ## Questions ### Is this operation splitting still correct? $\frac{\partial e}{\partial t} = \frac{-p\nabla u + Q^+ - Q^-}{\alpha}$ $\frac{\partial e}{\partial t} = -p\nabla u$ $\frac{\partial e}{\partial t} = \frac{Q^+ - Q^-}{\alpha}$ ### What is the actually emitted energy? $Q^-$ or $\frac{Q^-}{\alpha}$